Acta Cryst. (1994). C50, 1221-1222

Bis(4-bromoimidazolium)
 Tetrachloropalladate(II)

Giovanni Valle
Centro di Studio sui Biopolimeri del CNR, Dipartimento di Chimica Organica, Università di Padova, Padova, Italy
Renato Ettorre
Dipartimento di Chimica Inorganica, Metallorganica ed Analitica, Università di Padova, Padova, Italy

(Received 3 August 1993; accepted 17 December 1993)

Abstract

The structure consists of discrete $\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{BrN}_{2}^{+}$and PdCl_{4}^{2-} ions in a network of $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds. Bond lengths and angles for the imidazolium ring do not change appreciably upon halogenation.

Comment

This report extends work on halogenated nitrogen bases (Casellato, Ettorre \& Graziani, 1993; Valle \& Ettorre, 1992; Valle, Sánchez González \& Ettorre, 1991, 1993). The structure, (I), consists of discrete $\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{BrN}_{2}^{+}$and PdCl_{4}^{2-} ions. Bond lengths and angles for the PdCl_{4}^{2} anion are normal. The $\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{BrN}_{2}^{+}$cation is planar with the largest deviation from the ring plane being that of the Br atom, 0.018 (2) \AA. The dihedral angle between the plane through $\mathrm{N}(1), \mathrm{C}(2), \mathrm{N}(3), \mathrm{C}(4)$ and $\mathrm{C}(5)$ and the plane through $\mathrm{Pd}, \mathrm{Cl}(1), \mathrm{Cl}(2), \mathrm{Cl}\left(1^{\prime}\right)$ and $\mathrm{Cl}\left(2^{\prime}\right)$ is 73.2 (3).

(I)

Each cation is hydrogen bonded to two anions through $\mathrm{HN}(1)$ and $\mathrm{HN}(3)$, respectively. The $\mathrm{N}(1) \cdots \mathrm{Cl}$ and $\mathrm{N}(3) \cdots \mathrm{Cl}$ contact distances are equal. As displayed in Fig. 1, each anion is hydrogen bonded to four cations. The closest $\mathrm{Br} \cdots \mathrm{Cl}$ contacts between the ions are 3.475 (4) \AA. It may be noted that $\mathrm{Cl} \cdots \mathrm{Cl}$ contacts of 3.285 (2) and 3.407 (6) \AA, and $\mathrm{Cl} \cdots \mathrm{Br}$ contacts of 3.442 (2) \AA have been found
between 2-chloroimidazole and halogens bonded to Cu (Valle \& Ettorre, 1992; Valle, Sánchez González \& Ettorre, 1991, 1993). The distances $\mathrm{Cl} \cdots \mathrm{Cl}$ of 3.16-3.56 \AA and $\mathrm{Cl} \cdots \mathrm{Br}$ of $3.12-3.62 \AA$ are calculated from van der Waals radii for halogens bonded to C atoms (Nyburg \& Faerman, 1985). Differences of ring bond lengths and angles between 4-bromoimidazolium or 2-chloroimidazolium (Valle \& Ettorre, 1992) and imidazolium (Levasseur \& Beauchamp, 1991) are not appreciably larger than e.s.d. values. Effects of halogenation have been observed for protonated cytosine (Casellato, Ettorre \& Graziani, 1993).

Fig. 1. Drawing of the anion and four cations with the atomic numbering scheme. Displacement ellipsoids are shown at the 50\% probability level.

Experimental

Crystal data
$\left[\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{BrN}_{2}\right]_{2}\left[\mathrm{PdCl}_{4}\right]$
$M_{r}=544.2$
Monoclinic
$C 2 / c$
$a=16.465(2) \AA$
$b=7.413$ (2) \AA
$c=14.152(2) \AA$
$\beta=115.2(1)^{\circ}$
$V=1562.9(14) \AA^{3}$
$Z=4$
$D_{x}=2.31 \mathrm{Mg} \mathrm{m}^{-3}$
Data collection
Philips PW1100 diffractometer
$\theta-2 \theta$ scans
Absorption correction: none
2309 measured reflections
1316 independent reflections
1191 observed reflections $[F>3 \sigma(F)]$

Refinement

Refinement on F
$R=0.074$
$w R=0.077$

Mo $K \alpha$ radiation
$\lambda=0.7107 \AA$
Cell parameters from 25 reflections
$\theta=6-15^{\circ}$
$\mu=6.91 \mathrm{~mm}^{-1}$
Room temperature Needle
$0.3 \times 0.3 \times 0.3 \mathrm{~mm}$
Brick red

$$
\begin{aligned}
& R_{\text {int }}=0.104 \\
& \theta_{\max }=28^{\circ} \\
& h=-21 \rightarrow 18 \\
& k=0 \rightarrow 9 \\
& l=0 \rightarrow 18 \\
& 3 \text { standard reflections } \\
& \quad \text { frequency: } 180 \mathrm{~min} \\
& \text { intensity variation: } 10 \%
\end{aligned}
$$

$$
\begin{aligned}
& (\Delta / \sigma)_{\text {max }}=0.273 \\
& \Delta \rho_{\text {max }}=1.78 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\text {min }}=-2.89 \mathrm{e}^{-3}
\end{aligned}
$$

$S=1.2$
1191 reflections
79 parameters
H -atom parameters not refined
$w=1 /\left[\sigma^{2}(F)+0.0065 F^{2}\right]$

Atomic scattering factors from SHELX76 (Sheldrick, 1976); International Tables for X-ray Crystallography (1974, Vol. IV)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (\AA^{2})

$U_{\mathrm{eq}}=(1 / 3) \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$U_{\text {eq }}$
Pd	3/4	1/4	1/2	0.0360 (4)
$\mathrm{Cl}(1)$	0.6820 (2)	0.4682 (3)	0.3745 (2)	0.059 (1)
$\mathrm{Cl}(2)$	0.8315 (2)	0.4726 (3)	0.6177 (2)	0.0497 (9)
Br	0.4478 (1)	0.7017 (2)	0.35312 (8)	0.0735 (6)
$\mathrm{C}(2)$	0.6605 (8)	0.720 (1)	0.6263 (9)	0.058 (4)
$\mathrm{N}(1)$	0.6012 (7)	0.788 (1)	0.6583 (7)	0.055 (4)
C(5)	0.5170 (9)	0.798 (2)	0.5731 (8)	0.058 (5)
C(4)	0.5292 (8)	0.731 (1)	0.4899 (7)	0.049 (4)
N(3)	0.6174 (6)	0.686 (1)	0.5244 (6)	0.051 (3)

Table 2. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$

$\mathrm{Pd}-\mathrm{Cl}(1)$	$2.309(3)$	$\mathrm{N}(3)-\mathrm{C}(2)$	$1.33(1)$
$\mathrm{Pd}-\mathrm{Cl}(2)$	$2.323(3)$	$\mathrm{N}(3)-\mathrm{C}(4)$	$1.36(2)$
$\mathrm{Br}-\mathrm{C}(4)$	$1.839(9)$	$\mathrm{C}(4)-\mathrm{C}(5)$	$1.37(2)$
$\mathrm{N}(1)-\mathrm{C}(2)$	$1.33(2)$	$\mathrm{N}(3) \cdots \mathrm{Cl}(1)$	$3.19(1)$
$\mathrm{N}(1)-\mathrm{C}(5)$	$1.40(1)$	$\mathrm{N}(1) \cdots \mathrm{Cl}\left(2^{\mathrm{i}}\right)$	$3.19(1)$
$\mathrm{Cl}(1)-\mathrm{Pd}-\mathrm{Cl}(2)$	$89.8(1)$	$\mathrm{Br}-\mathrm{C}(4)-\mathrm{N}(3)$	$122(1)$
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(5)$	$109(1)$	$\mathrm{Br}-\mathrm{C}(4)-\mathrm{C}(5)$	$130(1)$
$\mathrm{C}(2)-\mathrm{N}(3)-\mathrm{C}(4)$	$110(1)$	$\mathrm{N}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$108(1)$
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{N}(3)$	$108(1)$	$\mathrm{N}(1)-\mathrm{C}(5)-\mathrm{C}(4)$	$105(1)$

Symmetry codes: (i) $\frac{3}{2}-x, \frac{1}{2}+y, \frac{3}{2}-z$.
The Pd atom was first located from a Patterson map using SHELXS86 (Sheldrick, 1985) and then a difference Fourier map revealed the other atoms (SHELX76; Sheldrick, 1976). The relatively large R and $R_{\text {int }}$ values are a result of the quality of the crystal and its decay.

Lists of structure factors, anisotropic displacement parameters and H -atom coordinates have been deposited with the IUCr (Reference: NA1063). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

Casellato, U., Ettorre, R. \& Graziani, R. (1993). Acta Cryst. C49, 956-957.
Levasseur, G. \& Beauchamp, A. L. (1991). Acta Cryst. C47, 547-550.
Nyburg, S. C. \& Faerman, C. H. (1985). Acta Cryst. B41, 274-279.
Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. Univ. of Cambridge, England.
Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. Univ. of Göttingen, Germany.
Valle, G. \& Ettorre, R. (1992). Acta Cryst. C48, 919-921
Valle, G., Sánchez González, A. \& Ettorre, R. (1991). Acta Cryst. C47, 1392-1394.
Valle, G., Sánchez González, A. \& Ettorre, R. (1993). Acta Cryst. C49, 1298-1300.

Acta Cryst. (1994). C50, 1222-1225

Triethylammonium Hydrogen Dichloro-tris(diphenylphosphinito-P)rhodium(III)Tetrahydrofuran (1/1)

Derek J. Irvine and David J. Cole-Hamilton*
School of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, Scotland
John C. Barnes
Chemistry Department, University of Dundee, Dundee DDI 4HN, Scotland
R. Alan Howie
Department of Chemistry, University of Aberdeen, Old Aberdeen AB9 2UE Scotland

(Received 2 February 1994; accepted 7 March 1994)

Abstract

The title complex, triethylammonium dichlorobis$\{$ hydrogen bis[oxodiphenylphosphato($1-)-P]\}[$ oxo-diphenylphosphato(1-)-P]rhodium(III)-tetrahydrofuran $(1 / 1), \quad\left[\mathrm{C}_{6} \mathrm{H}_{16} \mathrm{~N}\right]\left[\mathrm{RhCl}_{2}\left(\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{OP}\right)\left\{\left(\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{OP}\right)_{2} \mathrm{H}\right\}\right]$.$\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}$, has square-pyramidal geometry which is unusual for rhodium(III) complexes. It occurs as an ion pair with the $\mathrm{Et}_{3} \mathrm{NH}^{+}$ion hydrogen bonded to the O atom [$2.631(23) \AA$] of the unique apical $\mathrm{Ph}_{2} \mathrm{PO}$ ligand. The basal $\mathrm{Ph}_{2} \mathrm{PO}$ ligands are connected by an $\mathrm{O} \cdots \mathrm{O}$ hydrogen bond [2.411 (23) Å].

Comment

During the course of studies on the coordination chemistry of mixed anhydrides of acrylic and diphenylphosphinous acids $\mathrm{Ph}_{2} \mathrm{PO}_{2} \mathrm{CCR}=\mathrm{CR}^{\prime} R^{\prime \prime}$ (Borowski et al., 1990; Iraqi et al., 1991), we discovered that under some circumstances, e.g. reaction with $\left[\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}\right]$ (Irvine, Cole-Hamilton, Barnes \& Hodgson, 1989; Irvine, Glidewell, Cole-Hamilton, Barnes \& Howie, 1991), $\mathrm{Ph}_{2} \mathrm{PO}_{2} \mathrm{CCH}=\mathrm{CH}_{2}$ was transformed into coordinated $\mathrm{Ph}_{2} \mathrm{POPPh}_{2}$. Since, in solution $\mathrm{Ph}_{2} \mathrm{PO}_{2} \mathrm{CCH}=\mathrm{CH}_{2}$ slowly converts to $\mathrm{Ph}_{2} \mathrm{PP}(\mathrm{O}) \mathrm{Ph}_{2}$, we studied the reaction of $\left[\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}\right]$ with $\mathrm{Ph}_{2} \mathrm{PP}(\mathrm{O}) \mathrm{Ph}_{2}$ (Irvine, 1990). The major product was $\left[\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{Ph}_{2} \mathrm{PPOPh}_{2}\right)\right]$, with the title compound (I) as a minor product.

(I)

